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A formal test of the theory of universal common
ancestry
Douglas L. Theobald1

Universal common ancestry (UCA) is a central pillar of modern
evolutionary theory1. As first suggested by Darwin2, the theory of
UCA posits that all extant terrestrial organisms share a common
genetic heritage, each being the genealogical descendant of a single
species from the distant past3–6. The classic evidence for UCA,
although massive, is largely restricted to ‘local’ common ancestry—
for example, of specific phyla rather than the entirety of life—and
has yet to fully integrate the recent advances from modern phyloge-
netics and probability theory. Although UCA is widely assumed, it
has rarely been subjected to formal quantitative testing7–10, and this
has led to critical commentary emphasizing the intrinsic technical
difficulties in empirically evaluating a theory of such broad
scope1,5,8,9,11–15. Furthermore, several researchers have proposed that
early life was characterized by rampant horizontal gene transfer,
leading some to question the monophyly of life11,14,15. Here I provide
the first, tomy knowledge, formal, fundamental test ofUCA,without
assuming that sequence similarity implies genetic kinship. I testUCA
by applying model selection theory5,16,17 to molecular phylogenies,
focusing on a set of ubiquitously conserved proteins that are pro-
posed to be orthologous. Among a wide range of biological models
involving the independent ancestry of major taxonomic groups,
the model selection tests are found to overwhelmingly support
UCA irrespective of the presence of horizontal gene transfer and
symbiotic fusion events. These results provide powerful statistical
evidence corroborating the monophyly of all known life.

In the conclusion ofOn theOrigin of Species, Darwin proposed that
‘‘all the organic beings which have ever lived on this earth have
descended from some one primordial form’’2. This theory of
UCA—the proposition that all extant life is genetically related—is
perhaps the most fundamental premise of modern evolutionary
theory, providing a unifying foundation for all life sciences. UCA is
now supported by a wealth of evidence from many independent
sources18, including: (1) the agreement between phylogeny and bio-
geography; (2) the correspondence between phylogeny and the
palaeontological record; (3) the existenceof numerouspredicted trans-
itional fossils; (4) the hierarchical classification ofmorphological char-
acteristics; (5) the marked similarities of biological structures with
different functions (that is, homologies); and (6) the congruence of
morphological and molecular phylogenies9,10. Although the consili-
ence of these classic arguments provides strong evidence for the com-
mon ancestry of higher taxa such as the chordates or metazoans, none
expressly address questions suchaswhether bacteria, yeast andhumans
are all genetically related. However, the ‘universal’ in universal com-
mon ancestry is primarily supported by two further lines of evidence:
various key commonalities at the molecular level6 (including fun-
damental biological polymers, nucleic acid genetic material, L-amino
acids, and core metabolism) and the near universality of the genetic
code4,7. Notably, these two traditional arguments for UCA are largely
qualitative, and typical presentations of the evidence do not assess

quantitative measures of support for competing hypotheses, such as
the probability of evolution from multiple, independent ancestors.

The inference from biological similarities to evolutionary homo-
logy is a feature shared by several of the lines of evidence for common
ancestry. For instance, it iswidely assumed that high sequence resemb-
lance, often gauged by an E value from a BLAST search, indicates
genetic kinship19. However, a small E value directly demonstrates only
that twobiological sequences aremore similar thanwould be expected
by chance20. A Karlin–Altschul E value is a Fisherian null-hypothesis
significance test in which the null hypothesis is that two random
sequences have been aligned20. Therefore, an E value in principle
cannot provide evidence for or against the hypothesis that two
sequences share a common ancestor. (In fact, an E value cannot even
provide evidence for the random null hypothesis.21) Sequence simi-
larity is an empirical observation,whereas the conclusionof homology
is a hypothesis proposed to explain the similarity22. Statistically sig-
nificant sequence similarity can arise from factors other than common
ancestry, such as convergent evolution due to selection, structural
constraints on sequence identity, mutation bias, chance, or artefact
manufacture19. For these reasons, a sceptic who rejects the common
ancestry of all lifemight nevertheless accept that universally conserved
proteins have similar sequences and are ‘homologous’ in the original
pre-Darwinian sense of the term (homology here being similarity of
structure due to ‘‘fidelity to archetype’’)23. Consequently, it would be
advantageous to have a method that is able to objectively quantify the
support from sequence data for common-ancestry versus competing
multiple-ancestry hypotheses.

Here I report tests of the theory of UCA using model selection
theory, without assuming that sequence similarity indicates a genea-
logical relationship. By accounting for the trade-off between data pre-
diction and simplicity, model selection theory provides methods for
identifying the candidate hypothesis that is closest to reality16,17. When
choosing among several competing scientific models, two opposing
factorsmust be taken into account: the goodness of fit and parsimony.
The fit of amodel to data can be improved arbitrarily by increasing the
number of free parameters. On the other hand, simple hypotheses
(those with as few ad hoc parameters as possible) are preferred.
Model selection methods weigh these two factors statistically to find
the hypothesis that is both the most accurate and the most precise.
Because model selection tests directly quantify the evidence for and
against competing models, these tests overcome many of the well-
known logical problems with Fisherian null-hypothesis significance
tests (such as BLAST-style E values)16,21. To quantify the evidence
supporting the various ancestry hypotheses, I applied three of themost
widely used model selection criteria from all major statistical schools:
the log likelihood ratio (LLR), the Akaike information criterion (AIC)
and the log Bayes factor (LBF)16,17.

Using these model selection criteria, I specifically asked whether
the three domains of life (Eukarya, Bacteria and Archaea) are best
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described by a unified, common genetic relationship (that is, UCA)
or by multiple groups of genetically unrelated taxa that arose inde-
pendently and in parallel. As one example, a simplified model was
considered for the hypothesis that Archaea and Eukarya share a
common ancestor but do not share a common ancestor with
Bacteria. This model (indicated by ‘AE1B’ in Fig. 1 and Table 1)
comprises two independent trees—one containing Archaea and
Eukarya and another containing only Bacteria. In these models the
primary assumptions are: (1) that sequences change over time by a
gradual, time-reversible Markovian process of residue substitution,
described by a 203 20 instantaneous rate matrix defined by certain
amino acid equilibrium frequencies and a symmetric matrix of
amino acid exchangeabilities; (2) that new genetically related genes
are generated by duplication during bifurcating speciation or gene
duplication events; and (3) that residue substitutions are uncorre-
lated along different lineages and at different sites. The model selec-
tion tests evaluate how well these assumptions explain the given data
set when various subsets of taxa and proteins are postulated to share
ancestry, without any recourse to measures of sequence similarity.

The theoryofUCAallows for thepossibility ofmultiple independent
origins of life1–6. If life began multiple times, UCA requires a ‘bottle-
neck’ in evolution inwhichdescendants of only one of the independent
origins have survived exclusively until the present (and the rest have
become extinct), or, multiple populations with independent, separate
origins convergently gained the ability to exchange essential genetic
material (in effect, to become one species). All of themodels examined
here are compatible with multiple origins in both the above schemes,
and therefore the tests reported here are designed to discriminate

specifically between UCA and multiple ancestry, rather than between
single andmultiple origins of life. Furthermore,UCAdoes not demand
that the last universal common ancestor was a single organism24,25, in
accord with the traditional evolutionary view that common ancestors
of species are groups, not individuals26. Rather, the last universal com-
mon ancestor may have comprised a population of organisms with
different genotypes that lived in different places at different times25.

The data set consists of a subset of the protein alignment data from
ref. 27, containing 23 universally conserved proteins for 12 taxa from
all three domains of life, including nine proteins thought to have been
horizontally transferred early in evolution27. The conserved proteins
in this data set were identified based on significant sequence similarity
using BLAST searches, and they have consequently been postulated to
be orthologues. The first class of models I considered (presented in
Table 1 and Fig. 1) constrains all the universally conserved proteins in
a given set of taxa to evolve by the same tree, and hence these models
do not account for possible horizontal gene transfer (HGT) or sym-
biotic fusion events during the evolution of the three domains of life.
Hereafter I refer to this set ofmodels as ‘class I’. The class Imodel ABE,
representing universal common ancestry of all taxa in the three
domains of life and shown in Fig. 1a, can be considered to represent
the classic three-domain ‘tree of life’ model of evolution28.

Among the class I models, all criteria select the UCA tree by an
extremely large margin (score differences ranging from 6,569 to
14,057), even thoughnearlyhalf of theproteins in the analysis probably
have evolutionary histories complicated by HGT. For all model selec-
tion criteria, by statistical conventiona scoredifferenceof 5or greater is
viewed as very strong empirical evidence for the hypothesis with the
better score (in this work higher scores are better)16,17. All scores shown
are also highly statistically significant (the estimated variance for each
score is approximately 2–3). According to a standard objective
Bayesian interpretation of the model selection criteria, the scores are
the log odds of the hypotheses16,17. Therefore, UCA is at least 102,860

times more probable than the closest competing hypothesis. Notably,
UCA is the most accurate and the most parsimonious hypothesis.
Compared to themultiple-ancestry hypotheses, UCAprovides amuch
better fit to the data (as seen from its higher likelihood), and it is also
the least complex (as judged by the number of parameters).

The extraordinary strength of these results in the face of suspected
HGT events suggests that the preference for the UCAmodel is robust
to the extent of HGT. To test this possibility, the analysis was
expanded to includemodels that allow each protein to have a distinct,
independent evolutionary history. I refer to this set of models, which
rejects a single tree metaphor for genealogically related taxa, as ‘class
II’. Representative class II models are shown in Fig. 2.Within each set
of genealogically related taxa, each of the 23 universally conserved
proteins is allowed to evolve on its own separate phylogeny, in which
both branch lengths and tree topology are free parameters. For
example, the multiple-ancestry model [AE1B]II comprises two clus-
ters of protein trees, one cluster (AE) in which Archaea and Eukarya
share a common ancestor but are genetically unrelated to another
cluster (B) consisting only of Bacteria. Class II models are highly
reticulate, phylogenetic networks that can represent very complex
evolutionary mechanisms, including unrestricted HGT, symbiotic
fusion events and independent ancestry of various taxa. Overall,
the model selection tests show that the class II models are greatly
preferred to the class I models. For instance, the class II UCA hypo-
thesis ([ABE]II) versus the class I UCA hypothesis (ABE) gives a
highly significant LLR of 3,557, a DAIC of 2,633 and an LBF of
2,875. The optimal class II models represent an upper limit to the
degree of HGT, as many of the apparent reticulations are probably
due to incomplete lineage sorting, hidden paralogy, recombination,
or inaccuracies in the evolutionary models. Nonetheless, as with the
class I non-HGT hypotheses, all model selection criteria unequivo-
cally support a single common genetic ancestry for all taxa. Also
similar to the class I models, the class II UCA model has the greatest
explanatory power and is the most parsimonious.
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Figure 1 | Selected class I evolutionary hypotheses, excluding HGT. a, The
model ABE, representing UCA of all taxa in the three domains of life. b, A
competing multiple-ancestry model, AE1B, representing common ancestry
of Archaea and Eukarya, but an independent ancestry for Bacteria. Trees
shown are actual maximum likelihood estimates, with branch lengths
proportional to the number of sequence substitutions.

Table 1 | Class I hypotheses of single versus multiple ancestries

Hypothesis 2DK LLR DAIC LBF ML evolutionary model

ABE 0 0 0 0 R-IGF
AE1B 17 6,569 6,586 6,889 (AE) R-IGF; (B) R-GF
AB1E 17 7,805 7,822 8,031 (AB) W-IGF; (E) R-GF
BE1A 18 8,192 8,210 8,488 (BE) R-IGF; (A) W-IGF
A1B1E 34 13,350 13,384 13,865 (E) R-GF; (B) R-GF; (A) W-IGF
ABE2M1M 16 12,104 12,120 12,186 (ABE2M) W-IF; (M) R-GF
ABE2H1H 59 14,040 14,057 14,001 (ABE2H) R-IGF; (H) empirical

Shown are the model section scores for class I hypotheses of single ancestry versus multiple
ancestries, excluding HGT events. A, Archaea; B, Bacteria; E, Eukarya; H, Homo sapiens;
M,Metazoa; ABE2M, ABE without Metazoa; ABE2H, ABE without H. sapiens. AE1B denotes a
hypothesis of two independent ancestries, one tree for A and E together, and another separate
tree for B. K denotes the total number of parameters in the model. All criteria are given as
differences from ABE, so that larger values indicate less support for that model relative to ABE.
LLR and DAIC scores correspond to the maximum likelihood (ML) estimates. For the ML
evolutionary model, the first letter refers to the rate matrix: R, RtREV; W, WAG. The following
letters denote models with additional parameters: I, invariant positions; G, gamma rate
variation; F, empirical amino acid frequencies. The raw log likelihood for ABE is2126,299, and
the marginal log likelihood is 2126,713.
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Several hypotheses have been proposed to explain the origin of
eukaryotes and the early evolution of life by endosymbiotic fusion of
an early archaeon and bacterium29. A key commonality of these
hypotheses is the rejection of a single, bifurcating tree as a proper
model for the ancestry of Eukarya. For instance, in these biological
hypotheses certain eukaryotic genes are derived from Archaea
whereas others are derived from Bacteria. The class II models freely
allow eukaryotic genes to be either archaeal-derived or bacterial-
derived, as the data dictate, and hence class II hypotheses can model
several endosymbiotic ‘rings’ and HGT events. Because specific
endosymbiotic fusion schemes can be represented by constrained
versions of the unrestricted class II models, the endosymbiotic fusion
hypotheses are nested within the class II hypotheses shown in Table 2.
For nested hypotheses, the constrained versions necessarily have
equal or lower likelihoods than the unconstrained versions. As a
result, strict bounds can be placed on the LLR and DAIC scores
for the constrained class II network models that represent specific
endosymbiotic fusion or HGT hypotheses (see Methods and
Supplementary Information). In all cases, these bounds show that
multiple-ancestry versions of the constrained class II models are
overwhelmingly rejected by the tests (model selection scores of
several thousands), indicating that common ancestry is also preferred
for all specific HGT and endosymbiotic fusion models. In terms of a
fusion hypothesis for the origin of Eukarya, the data conclusively
support a UCA model in which Eukarya share an ancestor with
Bacteria and another independently with Archaea, and in which
Bacteria and Archaea are also genetically related independently of
Eukarya (see Table 3).

The proteins in this data set were postulated to be orthologous on
the basis of significant sequence similarity27. Because the proteins are

universally conserved, all of the taxa have their own specific versions
of each of the proteins. It would be of interest to know how the tests
respond to the inclusion of proteins that are not universally con-
served, as omitting independently evolved proteins could perhaps
bias the results towards common ancestry. Nevertheless, the inclu-
sion of bona fide independently evolved genes has no effect on the
likelihoods of the winning class II models, except in certain cases to
strengthen the conclusion of common ancestry (for a formal proof,
see the Supplementary Information). Many proteins probably do
exist that have independent origins. For instance, in the Metazoa
certain protein domains have probably evolved de novo that are not
found in either Bacteria or Archaea30. However, the independent
evolution of unique Metazoan proteins, by itself, is not evidence
for or against UCA. The probability that the Metazoa would evolve
a new protein domain is the same whether or not the Metazoa are
related to Bacteria and Archaea. Therefore, omitting proteins with
independent origins from the data set does not affect support for the
UCAhypothesis versusmultiple-ancestry hypotheses. In fact, includ-
ing independently evolved proteins is expected to increase support
for common ancestry for the subsets of taxa that share them (in this
example, to increase support for common ancestry of the Metazoa).

As is common in phylogenetic practice, most gaps and poorly
aligned regions were removed from the original data set used in this
analysis27, leaving only those sites that were thought to be homolog-
ous with high confidence. To explore the effect of these omitted sites,
the model selection tests were performed on a similar data set, with
the same proteins and species, in which all gaps were kept in the final
alignment (see Supplementary Methods and Supplementary Tables
5–8). The inclusion of these gapped and poorly aligned regions in the
analyses greatly increases the support for UCA in all cases (for
instance, with the ABE versus AE1B test, the class I DAIC is 10,323
and the class II DAIC is 11,072).

What property of the sequence data supports common ancestry so
decisively? When two related taxa are separated into two trees, the
strong correlations that exist between the sequences are no longer
modelled, which results in a large decrease in the likelihood. Con-
sequently, when comparing a common-ancestry model to a multiple-
ancestrymodel, the large test scores are a directmeasure of the increase
in our ability to accurately predict the sequence of a genealogically
related protein relative to an unrelated protein. The sequence correla-
tions between a given clade of taxa and the rest of the tree would be
eliminated if the columns in the sequence alignment for that clade were
randomly shuffled. In such a case, these model-based selection tests
should prefer the multiple-ancestry model. In fact, in actual tests with
randomly shuffled data, the optimal estimate of the unified tree (for
both maximum likelihood and Bayesian analyses) contains an extre-
mely large internal branch separating the shuffled taxa from the rest. In
all cases tried, with a wide variety of evolutionary models (from the
simplest to the most parameter rich), the multiple-ancestry models for
shuffled data sets are preferred by a largemargin over commonancestry
models (LLR on the order of a thousand), even with the large internal
branches. Hence, the large test scores in favour of UCA models reflect
the immense power of a tree structure, coupled with a gradual
Markovian mechanism of residue substitution, to accurately and pre-
cisely explain the particular patterns of sequence correlations found
among genealogically related biological macromolecules.

Table 2 | Class II hypotheses of single versus multiple ancestries

Hypothesis 2DK LLR DAIC LBF

[ABE]II 0 0 0 0
[AE1B]II 391 7,642 8,033 8,124
[AB1E]II 391 8,473 8,864 8,864
[BE1A]II 414 8,829 9,243 9,333
[A1B1E]II 782 14,481 15,263 15,369
[ABE2M1M]II 391 12,061 12,452 12,512
[ABE2H1H]II 391 14,141 14,532 14,126

Shown are model selection scores for class II hypotheses of single ancestry versus multiple
ancestries, allowing for unlimited HGT and/or endosymbiotic fusion events. Abbreviations are
as in the Table 1 legend. All criteria are listed as differences from [ABE]II. All scores shown are
highly statistically significant (the estimated variance for each score is approximately 326). The
raw log likelihood for [ABE]II is 2122,742, and the marginal log likelihood is 2123,838.

Table 3 | Class I and class II hypotheses for selected subsets

Hypotheses 2DK LLR DAIC LBF

AB versus A1B 17 5,545 5,562 5,837
BE versus B1E 16 5,157 5,173 5,380
AE versus A1E 17 6,782 6,899 6,979
[AB]II versus [A1B]II 391 6,008 6,399 6,505
[BE]II versus [B1E]II 368 5,652 6,020 6,036
[AE]II versus [A1E]II 391 6,839 7,230 7,245

Shown are model selection scores for class I and II hypotheses for selected subsets of the taxa.
Single ancestry hypotheses are listed left, multiple-ancestry hypotheses right. Terms are as in
Table 1.
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Figure 2 | Selected class II evolutionary hypotheses, including HGT. a, The
reticulated model [ABE]II, representing UCA. b, A competing network
model of multiple ancestry, [AE1B]II, representing common ancestry of
Archaea and Eukarya, but a separate ancestry for Bacteria.Models are shown
as phylogenetic networks (reticulate trees). The phylogenetic networks are
derived from themaximum likelihood estimates of the 23 individual protein
phylogenies using the evolutionary model parameters shown for ABE and
AE1B in Table 1.
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METHODS SUMMARY
All analyses were performed with 12 taxa, four from each domain of life, from the
previously described data set comprising 23 ubiquitous proteins27. Archaea:
Methanococcus jannaschii, Archaeoglobus fulgidus, Pyrococcus furiosus and
Thermoplasma acidophilum; Eukarya: Drosophila melanogaster, Homo sapiens,
Caenorhabditis elegans and Saccharomyces cerevisiae; Bacteria: Escherichia coli,
Bacillus subtilis, Mycobacterium tuberculosis and Porphyromonas gingivalis.
Optimal models were determined using both maximum likelihood and
Bayesian phylogenetic methods. For a hypothesis involving several independent
trees, such as model AE1B, each tree in the model was allowed to have its own
independent evolutionary model parameters (such as amino acid substitution
matrix, shape parameter for the gamma rate distribution, fraction of invariant
sites, and empirical amino acid background frequencies), if it improved the
likelihood. For amultiple-treemodel such as AE1B, the total likelihood is simply
theproduct of the individual likelihoods fromeach independent tree. Similarly, in
a Bayesian analysis the total marginal likelihood is the product of marginal like-
lihoods from each independent tree. The AIC was calculated as AIC5 L2K,
where L is the log likelihood andK is the total number of parameters in themodel.
Note that this differs from some common versions of the AIC by a factor of22,
and thus a maximum is preferred; this version was chosen for ease of comparison
with the other test scores. No assumptions were made about the positions of the
roots of the trees, as all inferred trees are unrooted. For the class II models
involving HGT, each protein was given its own branch length and topology
parameters; all other parameters were identical to the analogous class I model.
The class II models thus implicitly assume that HGT involves the exchange of
entire protein-coding genes. All phylogenetic input files are available by request.

Full Methods and any associated references are available in the online version of
the paper at www.nature.com/nature.
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METHODS
Data sets. The original data set comprises 6,591 aligned amino acids from 23
ubiquitous proteins27: alanyl-tRNA synthetase, aspartyl-tRNA synthetase,
glutamyl-tRNA synthetase, histidyl-tRNA synthetase, isoleucyl-tRNA synthe-
tase, leucyl-tRNA synthetase, methionyl-tRNA synthetase, phenylalanyl-tRNA
synthetase b subunit, threonyl-tRNA synthetase, valyl-tRNA synthetase, ini-
tiation factor 2, elongation factor G, elongation factor Tu, ribosomal protein
L2, ribosomal protein S5, ribosomal protein S8, ribosomal protein S11, amino-
peptidase P, DNA-directed RNA polymerase b chain, DNA topoisomerase I,
DNA polymerase III c subunit, signal recognition particle protein and rRNA
dimethylase. The original data set was constructed by removing poorly aligned
regions and most gapped columns from the CLUSTALW alignment27. I con-
structed a similar data set, using the same proteins from the same taxa, which
retained the entire protein sequences. The proteins in this data set were inde-
pendently aligned with ProbCons31. The resulting complete unmodified align-
ment comprised 25,411 columns, including gaps.
Likelihood phylogenetics. For the LLR and AIC tests, more than 1,800 compet-
ing biological models were fit to this data using the method of maximum like-
lihood and the program ProtTest 1.4 (ref. 32) (defaults) supplemented by
independent runs with PhyML 2.4.5 (ref. 33). ProtTest calculates the maximum
likelihood for 72 evolutionary models for each tree in each model: B, B-F, B-G,
B-GF, B-I, B-IF, B-IG, B-IGF, C, C-F, C-G, C-GF, C-I, C-IF, C-IG, C-IGF, D,
D-F, D-G, D-GF, D-I, D-IF, D-IG, D-IGF, J, J-F, J-G, J-GF, J-I, J-IF, J-IG, J-IGF,
MM, MM-F, MM-G, MM-GF, MM-I, MM-IF, MM-IG, MM-IGF, MR, MR-F,
MR-G, MR-GF, MR-I, MR-IF, MR-IG, MR-IGF, R, R-F, R-G, R-GF, R-I, R-IF,
R-IG, R-IGF, V, V-F, V-G, V-GF, V-I, V-IF, V-IG, V-IGF,W,W-F,W-G,W-GF,
W-I, W-IF, W-IG, and W-IGF, where the substitution matrices are coded
as B5Blosum62, C5CtREV, D5Dayhoff, J5 JTT, MM5MtMam,
MR5MtREV, R5RtREV, V5VT, and W5WAG. The following letters
denote models with further parameters: I5 invariant positions, G5 gamma
distributed rate variation, F5 empirical amino acid frequencies. For the class
II HGTmodels, 23 different protein trees were calculated for each cluster of taxa
proposed to be genealogically related. For example, the model [AE1B]II com-
prises 46 different trees—23 different protein trees for Archaea and Eukarya, and
another 23 trees for Bacteria. The total log likelihood for a particular class II
model is the sum of the log likelihoods for all the protein trees in the model.
Bayesian phylogenetics. All Bayesian analyses were calculated with the parallel
version of MrBayes 3.1.2 (ref. 34) and used mixed-rate matrices and gamma-
distributed rate variation across sites (16 categories). A uniform (0.0, 200.0)
prior was assumed for the shape parameter of the gamma distribution, an
unconstrained exponential prior (mean5 0.1) was assumed for the branch
lengths, and a uniform prior was assumed for all topologies. Two independent
Markov chain Monte Carlo (MCMC) analyses were performed (each with one
cold and three heated chains), with all other parameters set to defaults.
Convergence was inferred after the cold chain topologies had reached a standard
deviation of split frequencies of less than 0.01 (generally never more than
10,000,000 generations). After convergence, the first half of the chain was dis-
carded as ‘burn in’. For the class II HGT models, the data were partitioned by

protein, and all parameters (topology, branch lengths, state frequencies, amino
acid substitution model and gamma shape) were unlinked across partitions.
Phylogenetic networks. Phylogenetic networks were computed and displayed
with SplitsTree 4.10 (ref. 35), using the equal angle, consensus network algo-
rithm (threshold5 0, to show all reticulations). The phylogenetic networks
shown in Fig. 2 are derived from the maximum likelihood estimates of the 23
individual protein phylogenies using the evolutionary model parameters shown
in Table 1.
Model selection test scores. LLR values were calculated directly from the like-
lihoods output by ProtTest and PhyML. The LLR test for non-nested hypotheses
was used as previously described36, which involves estimating the variance of a
centred log likelihood using the per site likelihoods as output by PhyML. The
number of parameters K was calculated as follows: one parameter per branch
length for all trees in the model, where the number of branch lengths per tree is
given by 2T2 3 (T is the number of taxa in a given tree); one parameter per tree if
the number of invariant sites was estimated; one parameter per tree if the
gamma-distribution shape parameter was estimated; 19 parameters per tree if
the empirical amino acid frequencies were estimated. Marginal likelihoods for
the Bayes factors were calculated with MrBayes34 using the harmonic-mean
estimator17. The LBF was calculated as the difference in the marginal-log like-
lihoods for each model.
Bounds on model selection scores. Consider three hypotheses: HA, HB and HC.
If HB is a partially constrained hypothesis nested within HC, then the following
inequalities necessarily hold:

LLRA{B§LA{LC ð1Þ

DAICA{B§AICA{LC ð2Þ

where LLRA2B5 LA2 LB, DAICA2B5AICA2AICB, and LX is the log like-
lihood for hypothesis HX. These inequalities follow directly from the definitions
of the model-selection scores and the fact that the likelihood for a nested, con-
strained hypothesis is always less than or equal to the likelihood of the uncon-
strained hypothesis16. Derivations and discussion are provided in the
Supplementary Materials. The inequalities are especially useful for the purposes
of this work, whereHA is aUCAhypothesis andHB andHC aremultiple-ancestry
hypotheses.
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1 Supplementary Tables

Table S1:

Raw likelihoods (PhyML) and marginal likelihoods (MrBayes) for optimal Class I models (original Brown et al.
dataset, no gaps).

Hypothesis K log likelihood marginal log likelihood
42 -126,299 -126,713
59 -132,868 -133,602
59 -134,104 -134,744
60 -134,491 -135,201
76 -139,649 -140,578
59 -138,403 -138,899
59 -140,339 -140,713
34 -82,765 -83,192
34 -93,825 -94,168
34 -85,224 -85,606
35 -106,282 -106,552
40 -121,200 -121,526
51 -99,370 -100,005
51 -89,547 -90,171
50 -90,381 -90,986
26 -49,268 -49,595
25 -50,102 -50,410
25 -40,279 -40,576
23 -32,121 -32,347
19 -19,139 -19,187
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Table S2:

Raw likelihoods (PhyML) and marginal likelihoods (MrBayes) for optimal Class II models (original Brown et al.
dataset, no gaps).

Hypothesis K log likelihood marginal log likelihood
966 -122,742 -123,838

1357 -130,384 -131,962
1357 -131,215 -132,702
1380 -131,571 -133,171
1748 -137,223 -139,207
1357 -134,803 -136,350
1357 -136,883 -137,964

782 -81,254 -82,137
782 -91,551 -92,407
782 -83,142 -84,084
805 -103,176 -104,139
920 -117,744 -118,777

1173 -97,559 -98,912
1173 -88,093 -89,382
1150 -88,794 -90,120

598 -48,429 -49,087
575 -49,130 -49,825
575 -39,664 -40,295
529 -31,627 -32,211
19 -19,139 -19,187

2

Table S3:

Class II minimum model selection scores for constrained multiple-origin hypotheses, relative to the unconstrained
single-origin hypothesis (i.e., reticulated UCA). The hypotheses listed in the lefthand column represent
all constrained versions of the model. Original Brown et al. dataset, no gaps.

Hypothesis min LLR min AIC min BIC
7,642 6,676 3,395
8,473 7,507 4,226
8,829 7,863 4,582

14,481 13,515 10,234
12,061 11,095 7,814
14,141 13,175 9,894

Table S4:

Class II minimum model selection scores for single origin vs constrained multiple-origin hypotheses (original
Brown et al. dataset, no gaps). The single-origin hypothesis (left) is unconstrained, whereas the multiple-origin
hypotheses (right) are constrained.

Hypothesis min LLR min AIC min BIC
vs 6,008 5,226 2,570
vs 5,652 4,870 2,214
vs 6,839 6,057 3,401
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Table S5:

Raw likelihoods (PhyML) and marginal likelihoods (MrBayes) for optimal Class I models, all gaps included.

Hypothesis K log likelihood marginal log likelihood
41 -338,997.1 -340,618
59 -349,301.6 -351,472
59 -351,171.6 -353,218
59 -351,079.7 -353,230
75 -358,970.0 -361,491
59 -358,941.1 -360,937
59 -365,748.0 -367,495
34 -231,313.2 -232,813
34 -215,757.3 -217,295
34 -245,512.4 -246,321
35 -251,200.9 -252,831
39 -311,184.5 -312,769
50 -223,555.7 -225,568
50 -240,981.6 -242,832
50 -253,402.7 -254,582
25 -105,567.3 -106,909
25 -117,988.4 -118,659
25 -135,414.3 -135,923
23 -107,740.1 -108,106
20 -54,563.5 -54,726

Table S6:

Hypothesis K LLR AIC LBF
0 0 0 0

18 10,304.5 10,322.5 10,854
18 12,174.5 12,192.5 12,600
18 12,082.6 12,100.6 12,612
34 19,972.9 20,006.9 20,873
18 19,944.0 19,962.0 20,319
18 26,750.9 26,768.9 26,877

4

Table S3:

Class II minimum model selection scores for constrained multiple-origin hypotheses, relative to the unconstrained
single-origin hypothesis (i.e., reticulated UCA). The hypotheses listed in the lefthand column represent
all constrained versions of the model. Original Brown et al. dataset, no gaps.

Hypothesis min LLR min AIC min BIC
7,642 6,676 3,395
8,473 7,507 4,226
8,829 7,863 4,582

14,481 13,515 10,234
12,061 11,095 7,814
14,141 13,175 9,894

Table S4:

Class II minimum model selection scores for single origin vs constrained multiple-origin hypotheses (original
Brown et al. dataset, no gaps). The single-origin hypothesis (left) is unconstrained, whereas the multiple-origin
hypotheses (right) are constrained.

Hypothesis min LLR min AIC min BIC
vs 6,008 5,226 2,570
vs 5,652 4,870 2,214
vs 6,839 6,057 3,401

3
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Table S7:

Raw likelihoods (PhyML) and marginal likelihoods (MrBayes) for optimal Class II models, all gaps included.

Hypothesis K log likelihood marginal log likelihood
943 -334,075.8 -335,753

1311 -344,780.0 -347,843
1311 -346,704.8 -348,967
1311 -346,442.7 -349,237
1725 -354,246.7 -358,166
1357 -353,144.7 -356,391
1357 -362,417.7 -363,862

759 -227,875.1 -230,058
759 -213,785.1 -214,758
759 -242,020.6 -243,061
805 -247,631.0 -249,661
897 -307,854.2 -309,006

1150 -221,327.0 -223,961
1150 -237,341.8 -240,385
1150 -249,824.6 -251,994

575 -104,422.1 -106,176
575 -116,904.9 -117,785
575 -132,919.7 -134,209
529 -105,513.7 -106,730
20 -54,563.5 -54,855

Table S8:

Hypothesis K LLR AIC LBF
0 0 0 0

368 10,704.2 11,072 12,090
368 12,629.0 12,997 13,214
368 12,366.9 12,735 13,484
782 20,170.9 20,953 22,413
414 19,068.9 19,483 20,638
414 28,341.9 28,756 28,109
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2 Supplementary Equations and Discussion

2.1 Specific reticulate hypotheses are implicitly considered in these tests

Endosymbiotic fusion hypotheses, like the Hydrogen hypothesis[1] or the “ring of life”[2], propose a reticulated
network, rather than a tree, to explain the history of genes. In both of these fusion hypotheses some eukaryotic
genes are archaeal-derived while others are eubacterial-derived. The Class II models represent general hypotheses
of this type, since the Class II models freely allow eukaryotic proteins to be either archaeal-derived or eubacterial-
derived if the data so dictate. The Class II models are fully reticulate, phylogenetic networks that possibly contain
both symbiotic “rings” and HGT events.

An example of a possible ring in one of the models is shown in Figure S1. This example is pulled directly from the
Class II model [ABE] . Two of the 23 protein trees are shown: one for Glu-tRNA synthetase (Figure S1A) and
another for rRNA dimethylase (Figure S1B). The synthetase is an informational protein, and as one might expect
the tree shows the eukaryotic version (red) branching from within Archaea (green), i.e. the eukaryotic protein is
archaeal-derived. In contrast, the dimethylase is a metabolic protein, and, again as one might expect, the tree shows
the eukaryotic proteins branching from within Bacteria (blue), i.e. the eukaryotic methylase is bacterial-derived.
These two trees, taken at face value, can be reconciled only by invoking either a bona fide HGT event or a fusion
event, where a ring can be created by drawing a line from the Eukarya to both Bacteria and Archaea.

Figure S 1: A possible “ring” in Class II model [ABE] . A. The individual unconstrained protein tree for Glu-tRNA
synthetase. B. The protein tree for rRNA dimethylase. Archaeal proteins are in green, bacterial in blue, eukaryotic in red.

Importantly, the Class II models used in these tests are completely unconstrained, in the sense that every protein
is free to have a different phylogeny with its own topology, branch lengths, background residue frequencies, in-
variant sites parameter, and gamma rate distribution. However, a particular Class II hypothesis, like the Hydrogen
hypothesis, can be specified within this modeling framework by constraining certain proteins to evolve on speci-
fied phylogenies. For example, the hydrogen hypothesis might require that certain eukaryotic metabolic proteins,
like the eukaryotic signal recognition protein, should be most closely related to the proteobacterium Escherichia
coli. Specific Class II hypotheses, like the ring of life and hydrogen hypotheses, can be represented as constrained
versions of the unrestricted Class II models shown in Table II of the main text. In this sense the endosymbiotic fu-
sion hypotheses are nested within the unconstrained Class II hypotheses. Therefore, we can put strict bounds on the
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LLR and AIC scores for endosymbiotic fusion hypotheses (and other reticulated scenarios involving HGT). These
bounds are a trivial consequence of the fact that nested hypotheses necessarily have a lower maximum likelihood
(and fewer parameters) than the unconstrained hypothesis[3]. A derivation of these bounds is given below.

2.2 Bounds on model selection scores for nested models

Let represent a Class II hypothesis that has not been tested directly, say, a model representing the “ring of life”
hypothesis of Rivera and Lake. Let represent the log likelihood for this “ring of life” hypothesis. Then, the
AIC for this model is given by:

AIC (1)

where is the number of parameters in the “ring of life” hypothesis. Note that this version of the AIC differs
from some common versions be a factor of . Similarly, let be the log likelihood for the corresponding
unconstrained Class II hypothesis :

AIC (2)

Finally, let be the log likelihood for a single origin Class I hypothesis ( ). Its AIC is:

AIC (3)

As explained above, if is nested within the hypothesis, then necessarily both and
(both of which follow directly from the properties of nested hypotheses).

For testing the single-origin hypothesis vs , we have

AIC AIC AIC (4)
AIC (5)
AIC (6)

where a positive AIC will favor , and a negative AIC will favor .

In general, unless we specify exactly and calculate its maximum likelihood, we cannot know either or .
However, because is nested within , we do know that , so

AIC AIC (7)

And we also know that , so

AIC AIC (8)

So now we have an expression for the minimum AIC in terms of known values. Analogous arguments prove
that

LLR (9)

Therefore, the AIC can possibly favor the nested hypothesis only when AIC . These results always
hold for any three hypotheses , , and , whenever is nested within .

Inspection of Supplementary Tables S1-2, S5, and S7 reveals that all likelihoods for the unconstrained multiple-
origin Class II hypotheses are substantially less than the scores for the corresponding single-origin hypotheses.
Therefore, the minimum AIC scores are on the order of several thousand for a test of single-ancestry vs any of the
multiple-ancestry Class II endosymbiotic fusion or HGT hypotheses. For instance, in a comparison of the single-
origin model [ABE] with, say, a constrained hydrogen hypothesis version of the [AE+B] multiple-origin model,
the AIC must be greater than 6,676. In all cases, these bounds show that multiple origin hypotheses are rejected
for constrained Class II models (results are summarized in Tables S3 and S4).

Bounds for the Bayesian marginal likelihood (and the log Bayes factor) are not as easily derived. However, the
results of these tests clearly suggest that the Bayes factor will behave similarly to the likelihood scores.
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2.3 Nested intermediate models show that the large ABE scores are due to common ancestry,
rather than evolutionary processes

This analysis in fact considers a very wide variety of related evolutionary models, due to the nesting of simpler
models within the general ones. For example, model ABE assumes a single tree with a single evolutionary process
(substitution matrix, rate variation, etc.) along the entire tree. On the other hand, model AB+E assumes two trees
and two evolutionary processes. The model selection tests highly prefer model ABE, but perhaps this has nothing to
do with one versus two trees and is simply because one evolutionary process, rather than two, is most appropriate.
Another possible test, then, would consider an intermediate model (AB+E)*, which assumes two trees but one
model. However, this analysis already considers the intermediate model (AB+E)*, along with myriad similar
variations. The intermediate model (AB+E)* is nested within (AB+E), and thus the intermediate model must
have a likelihood less than or equal to (AB+E). All multiple origin models have likelihoods that are much lower
than the single origin models, and they also have more parameters (see Tables S1, S2, S5, and S7). Therefore,
the intermediate model (AB+E)* necessarily has both a much lower likelihood and a much lower AIC than the
common ancestry hypothesis (ABE). This result follows directly from the inequalities derived above for model
selection scores (Equations 8 and 9). For example, in this particular case, comparing ABE vs (AB+E)* yields a
LLR and a AIC . Thus, a single evolutionary process cannot explain the advantage of the single
origin model ABE. Rather, the increased explanatory power of ABE vs AB+E must be due to the unified, single
origin tree.

8

3 Supplementary Methods and Results

3.1 Tests with randomly shuffled taxa

Multiple tests, similar to those reported for the real datasets, were performed on datasets in which the alignment
columns of one or more taxa were randomly shuffled. For instance, I randomly shuffled the alignment columns of
the eukaryotic taxa in the AE dataset (the eight archaeal and eukaryotic proteins). The maximum likelihood tree
was found, and also a Bayesian phylogenetic analysis was performed on the same shuffled dataset with MrBayes
(as described for the Class I methods). For simplicity the likelihood analyses all used the WAG substitution matrix.
To test the effects of the complexity of the model, I performed two different types of likelihood analyses, one called
“complex” that used gamma rate variation, invariant sites parameter, and empirical amino acid frequencies, and
another called “simple” that used only a fixed gamma rate variation parameter. Multiple independently shuffled
datasets were analyzed for each set of taxa. Similar analyses were performed with the AB dataset (the eight archaeal
and bacterial proteins). Representative results are summarized in Table S9. In all of the likelihood analyses, the
multiple-origin models were preferred by a very large margin by the model selection criteria. A typical tree, with
branch lengths, is shown in Figure S2.

9
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Table S9:

Results for analyses in which a portion of the taxa had randomly shuffled alignment columns. The model in
parentheses contains shuffled taxa. “LLR” is the log likelihood ratio, “LBF” is the log Bayes factor, “std dev” is
the standard deviation for the replicates, and “n” is the number of replicates.

Hypothesis LLR/LBF std dev n
( ) vs , simple ML -934 19 6
( ) vs , complex ML -505 23 6
( ) vs , complex ML -707 38 7
( ) vs , Bayes -316 19 3

Figure S 2: A typical tree resulting from shuffling a subset of taxa. This tree represents the maximum likelihood estimate for
a shuffled AB hypothesis (Archaea and Bacteria), in which the the alignment columns of the bacterial proteins were shuffled.
The large internal branch is of length 121, whereas the remaining branches, too small to be displayed, average 0.25.
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3.2 Omission of proteins with independent origins does not bias the model selection tests towards
common ancestry

Consider two groups of taxa, A and B, each of which share a set of orthologous proteins . The data in is ordered
in a sequence alignment, which can be represented as a matrix with rows for each of the taxa and columns
for each of the sites in the alignment. The sequence data in also comprises multiple proteins (of total number
P), so that can also be represented as a vector of proteins ( ). Now suppose that taxa A has
an additional set of independently evolved proteins (set ), which is not found in taxa B. We would like to know
how omitting or including this protein set affects the model selection tests for the competing hypotheses of AB
(taxa A and B sharing common ancestry) versus A+B (taxa A and B having independent origins). I will show that,
for the Class II models (the winning models), there is no effect on the model selection tests.

Recall that the log-likelihood for a hypothesis H conditional on an observed data set D is defined as the natural
logarithm of the probability of D given H:

(10)

For multiple pieces of independently distributed data (where for data points), the log-
likelihood is simply the sum of the individual log-likelihoods:

(11)

Thus, making the usual site independence assumption for the sequence data, the log-likelihood for the hypothesis
AB and model parameters given the universally shared protein data set can be written as the sum:

(12)

with an analogous expression for the hypothesis A+B. For the combined data set of both the universally shared
proteins and the independently evolved proteins , the log-likelihoods can also be expressed as sums:

(13)

(14)

In the Class II models, each protein has its own independent set of parameters (tree topology, branch lengths, rate
variation, substitution matrix, etc.). Each protein (each and ) is described by independent submodels, and so
each protein set has a corresponding independent set of parameters for each of the proteins in . The
protein set also has its own independent set of parameters :

(15)

(16)

(17)

(18)
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The log-likelihood ratio for hypotheses AB vs A+B given data set can be written:

LLR (19)

(20)

where represents the ML estimate of based on data . Similarly, the log-likelihood ratio for hypotheses AB
vs A+B given the full data set is:

LLR (21)

(22)

We can express the difference in the log-likelihood ratios ( LLR) for including versus omitting the data set with
independent origins by substitution:

LLR LLR LLR (23)

(24)

Now, the only difference between the two likelihoods above is that taxa A are attached to B in the first, but they
are separated in the second. Since taxa B lacks the protein set , all the B sites corresponding to are gaps
that represent “missing data”, and these sites do not contribute to the likelihoods in either case. In both cases,
the likelihood is maximized conditional on the data in taxa A alone. Hence, and

. Therefore,

LLR (25)

However, both of the likelihoods above are also maximized over the same parameter space using the same data, i.e.
and are identical. Thus, for Class II models, the two likelihoods above are equal:

(26)

and

LLR (27)

Hence, for the winning Class II models, the omission of proteins with independent origins has no effect on the
log-likelihood ratios, nor, for that matter, on any of the model selection tests (since the number of parameters is
also equivalent for and ). The only exception (not considered above) is when testing independent origin models
that split up the taxa within set A. In that case, if the proteins are truly homologous within A and the models are
approximately valid, including the protein set is expected to favor common ancestry for A.

Equation (27) has been verified empirically, and those results are described in the next section.
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3.3 Empirical tests with independently evolved proteins have no significant effect on the model
selection scores

I took the original Brown et al. dataset of 23 proteins from 12 taxa, and included an additional 502 aa protein found
only in the Eukarya. I then performed both the likelihood and Bayesian tests for two Class II analyses, one in which
the eukaryotic protein was omitted, and one where it was included. The results are shown in Table S10.

Table S10

Hypothesis LL marginal LL LLR (relative to ABE) Bayes factor
omit protein [ABE] -122,742 -123,838 0 0

[AB+E] -131,215 -132,702 8473 8864
include protein [ABE] -125,992 -127,071 0 0

[AB+E] -134,465 -135,933 8473 8862

As can be clearly seen, the likelihood ratios are unchanged whether the independently evolved protein is omitted
from or included in the analysis (the small difference in the Bayes factor is well within the error of the esti-
mates).
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3.4 Inclusion of potential orthologs identified from structural and functional considerations alone

One may wonder how this analysis would fare if sequence similarity were not used as the criterion for including
proteins in the analysis, since it is likely I have excluded true orthologs that have diverged so greatly that they
no longer share significant sequence similarity. This method can be modified easily to include potential orthologs
based only on structural and functional characteristics, rather than on sequence. For instance, the ribosome is shared
among all three domains of life, and there are representative structures of each, including several large RNAs and
many ribosomal proteins. One could choose to include in the analysis only ribosomal proteins that have similar
biochemical functions, protein folds, and quaternary position in the ribosomal subunits, irrespective of sequence. Of
course, such a structure/function-based method would be expected to primarily identify proteins with high sequence
similarity (since the majority of these hypothesized orthologs in reality do have high sequence similarity). I have
performed studies along these lines, by finding orthologs of the Archaeal ribosomal proteins from Haloarcula
marismortui using only structural considerations and structure-based sequence alignments. As expected, most of
the hypothesized orthologs have high sequence similarity. Even those proteins that have no statistically significant
sequence similarity (according to BLAST) still support common ancestry in the tests (though to a lower extent than
highly similar sequences), and none contradict common ancestry.

Here I provide one representative example from the ribosome in which sequence similarity is negligible. I used
the 246 aa L4 ribosomal protein sequence from the Archaeal Haloarcula marismortui large subunit (X-ray crystal,
1jj2, chain C), for which there are several high resolution crystal structures. I searched the RCSB PDB structure
database using Dali ( http://ekhidna.biocenter.helsinki.fi/dali_server/ ) to find potential
orthologs based on structure alone, regardless of any sequence similarity. The highest scoring hit in Eubacteria was
the Escherichia coli L4 ribosomal protein (cryo-EM, 2gya, chain C). The highest scoring eukaryotic hit was the L4
ribosomal protein from Saccharomyces cerevisiae (cryo-EM, 1s1i, chain D). Only the yeast and archaeal proteins
show significant sequence similarity (BLAST E-value = 1e-30), whereas the other have E-values . These three
L4 proteins were structurally aligned using MATT ( http://groups.csail.mit.edu/cb/matt/ ), and
the resulting sequence alignment (based on structural information alone), was used in the tests of common ancestry.
The results are shown below in Table S11 for the contribution from L4 specifically.

Table S11

Hypothesis LL LLR (relative to ABE)
ABE -1848.0 0
AE+B -1878.4 30.4
AB+E -1950.8 102.8
BE+A -1957.1 109.1
A+B+E -1977.3 129.3

As can be seen from the log-likelihood ratios, all the tests support the common ancestry of ribosomal protein L4,
with the closest independent origin hypothesis 30.4 logs less likely (likelihood ratio ). Because L4 supports
common ancestry individually, it will also support common ancestry when incorporated in the Class II models.
Again, while 30.4 logs may seem somewhat small relative to the log-likelihood ratios found using the Brown et al.
dataset, the LLR per site is 0.0897, which is analogous to 591 logs for a dataset as large as the Brown et al. dataset.
The remaining ribosomal protein orthologs that could be identified from structural considerations behave similarly
or provide even stronger support for common ancestry (largely because they have higher sequence similarity, such
as is the case with L2). Hence, the omission of potential orthologs with negligible sequence similarity has only a
marginal effect on the results.
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4 Supplementary Notes

4.1 Problems with BLAST-style null-hypothesis tests

As alluded to in the main text of the paper, there are deep theoretical difficulties with inferring homology from
sequence similarity detected by small E-values from pairwise BLAST searches. A BLAST E-value is a Fisherian
null hypothesis significance test[4, 5]. According to the logic of null hypothesis testing, a small E-value allows
us to reject the null hypothesis at some specified “level of significance”[3, 6, 7, 8]. With BLAST searches, the
null-hypothesis holds that the observed alignment score was generated by the optimal alignment of two random se-
quences. However, rejecting this random null hypothesis is not logically equivalent to accepting common ancestry.
This reasoning could be valid only if ‘randomness’ and ‘common ancestry’ were mutually exclusive hypotheses,
but they are not. As discussed in the main text, significant sequence similarity (greater than random) can be due to
many other factors besides common ancestry. For these reasons, the conclusions from model selection tests may
be importantly different from conclusions based on E-value null hypothesis tests.

For instance, a small E-value strictly indicates only that the two sequences being compared have an alignment score
that is improbable if they are random. By itself, however, a small probability is meaningless unless it can be shown
that the observed alignment score is more probable if the two sequences are related. In some cases, the alignment
score may be even less probable under the common ancestry hypothesis. If so, one should logically prefer the null
hypothesis instead of homology, even in the face of a “statistically significant” E-value. An example of such a case
is provided below (section 4.2).

In a rigorous objective comparison with the null hypothesis, common ancestry hypotheses also usually have more
parameters (such as a branch length between the two sequences) that must be accounted for as explained in the
introduction. These are well-known faults of frequentist null hypothesis tests that model selection tests overcome[3,
6, 7, 8]. Consequently, this is a great advantage of the model selection view taken in this analysis.

For the sake of argument, let us accept, a priori and contrary to the purpose of this analysis, the assumption that
significant pairwise BLAST similarities suggest common ancestry for two proteins. Even given this assumption,
there are still compelling reasons to suspect that these phylogenetic analyses may favor independent origins for
certain sets of sequences with significant similarity. BLAST E-values apply solely to pairwise comparisons, where
one query sequence is compared to one subject sequence. As such, BLAST E-values cannot directly establish the
common ancestry of multiple proteins (such as all the conserved proteins from the three domains of life in this
analysis). Measures of sequence similarity, like BLAST alignment scores, are not true distance metrics, because
they do not satisfy the triangle inequality. Therefore, similarities among three or more sequences may conflict –
two sequences A and B may be similar, and B and C may be similar, yet A and C can be quite dissimilar (even less
similar than expected by pure chance). Thus, a more stringent and rigorous way to test the common ancestry for
more than two proteins would be to model the possible relationships among the proteins, which may conflict. It is
plausible, then, that the extra information imparted by a phylogenetic model may favor independent origins over
common ancestry, even for a set of proteins with low BLAST E-values. A simple example of exactly this situation
is given in section 4.3 below.

All these considerations demonstrate that one should not expect low pairwise E-values to automatically guarantee
a conclusion of common ancestry in these phylogenetic model selection tests.

4.2 The “null hypothesis” may be favored even with significant BLAST similarity

The following two artificial protein sequences have high similarity as gauged by BLAST E-value (E = 2e-40, using
the bl2seq utility with the database size of the current non-redundant database, 2,165,046,588). The BLAST output
is shown below. Using the BLOSUM62 background frequencies, the log-likelihood for the “null hypothesis”, that
these two sequences are unrelated and the similarities between them are entirely due to chance, is -3667.4. A
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competing common ancestry hypothesis, using the BLOSUM62 transition matrix as implemented in PhyML and a
branch length of 0.65 gives a log-likelihood of -3684.5 – which is 17.1 logs lower. Thus, the AIC is 16.1, and the
random null hypothesis is roughly 10 million times more likely.

>SEQ1
KSTAEIRQSKGHQYSRATTSQRCVRAGGKHNDLENVGGDHDAIQFAWYESDDEAYIIRIG
DNKGAPYASDNFWQMGDTGPCGPTEIFYDHGMEPLTGMGLERIAAVLQHVNSNYDIRTLI
QAVAKVTGATDLSNKSLRVIADHIRSCAFLIADGVMPSNENRGYVRAVRHGNMAKETFFY
KLVGPLIDVMGSAGEDLKRQQAQVEQVLKTEEEQFARTLERGLALLDEELATAFRLYDTY
GFPVTADVCRERNIKVDEAGFEAAMEEQRRRAREASGFGADYNAMIRVDSASEFKGYDHL
ELNGKVALFVDGKNAGQEAVVVLDQTPFYAESGGQVGDKGELKSFAVEDTQKYGQAIGHI
GKLAAGSLKVGDAVQADVDEARRARIRLNHSATHLMHAALRQVLGTHVSQKGSLVNDKVS
HNEAMKPERAVEDLVNTQIRRNLNIMDLEAAKAKGAMALFGEKYDERVRELCGGTHASRT
GDIGLFRIISAGVRRIEAVTGEGAIATVHADSDRLVAHLLKNLADKVRSVLERTRQLQLK
EQAAAQESANLSSKAIDVNGVKLLVSEEPKMLRTMVDDLKNQLGSTIIVLATVVEGKVSL
IAGVSKDVTDRVKAGELIGMVAQQVGGKGGGRP

>SEQ2
MPINEIRVQKGQRYRDAINDKKAVKKGDKFLDLDEIAGEDEAVQPVYLDSEDGLYILRHS
AAHLLANAVTNLFPLPNTGPVVENGFYYDFDMKPITEEDLSKIEEEMKRVKENVPIRRMI
YSKDELLKIFSKNPYKIRIINENVEGKSSVYQQGNFPHVPSTGYIKAFKLLSIASAVYKY
DESKNLVRIYGTAFPDEKSLRRYLENLEEAKKRDHRKIIEMDLAVFNSEWAPGFPMYTPN
GQIIRKELIKYMDYVNGKNGWTDVWTPHKDTIWKQSGHYAKYNMYLFVLPDGDSYGIKPM
NCPGHIAIFARRKYSYRDLPVKYSETVYRYEKSGEVGGLTRPRAFTQDDGHEFDQIVGEI
KTLLGMVRETFTTVFGNIEMADLSVIDKEHPENYLLSYVCKDCGNRVEGLRGTDIECPVC
HSHNMDPDFSTWDNATEQLRQAMDSMGITYKEYPGEAAFYGPKIDVHVKDALGRMWQLST
IQVDFFMPINFGLTYTNSEGKEERVVIIHGSYERFMAILLEHFAGKLPTWLTPIQTYVIP
VGTANAEYARKVNKSLLDAGIRSVVDDGPDTVSKKIKMIHDQRPSYIVVVGAKEEQDNTV
TVRNRAGKSKTYGMNEFLEIIKNEIEKRSVGQA
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Query= SEQ1
(633 letters)

>SEQ2
Length = 633

Score = 172 bits (435), Expect = 2e-40
Identities = 127/591 (21%), Positives = 255/591 (43%)

Query: 5 EIRQSKGHQYSRATTSQRCVRAGGKHNDLENVGGDHDAIQFAWYESDDEAYIIRIGDNKG 64
EIR KG +Y A ++ V+ G K DL+ + G+ +A+Q + +S+D YI+R

Sbjct: 5 EIRVQKGQRYRDAINDKKAVKKGDKFLDLDEIAGEDEAVQPVYLDSEDGLYILRHSAAHL 64

Query: 65 APYASDNFWQMGDTGPCGPTEIFYDHGMEPLTGMGLERIAAVLQHVNSNYDIRTLIQAVA 124
A N + + +TGP +YD M+P+T L +I ++ V N IR +I +

Sbjct: 65 LANAVTNLFPLPNTGPVVENGFYYDFDMKPITEEDLSKIEEEMKRVKENVPIRRMIYSKD 124

Query: 125 KVTGATDLSNKSLRVIADHIRSCAFLIADGVMPSNENRGYVRAVRHGNMAKETFFYKLVG 184
++ + +R+I +++ + + G P + GY++A + ++A + Y

Sbjct: 125 ELLKIFSKNPYKIRIINENVEGKSSVYQQGNFPHVPSTGYIKAFKLLSIASAVYKYDESK 184

Query: 185 PLIDVMGSAGEDLKRQQAQVEQVLKTEEEQFARTLERGLALLDEELATAFRLYDTYGFPV 244
L+ + G+A D K + +E + + ++ + +E LA+ + E A F +Y G +

Sbjct: 185 NLVRIYGTAFPDEKSLRRYLENLEEAKKRDHRKIIEMDLAVFNSEWAPGFPMYTPNGQII 244

Query: 245 TADVCRERNIKVDEAGFXXXXXXXXXXXXXXSGFGADYNAMIRVDSASEFKGYDHLELNG 304
++ + + + G+ SG A YN + V + G + G

Sbjct: 245 RKELIKYMDYVNGKNGWTDVWTPHKDTIWKQSGHYAKYNMYLFVLPDGDSYGIKPMNCPG 304

Query: 305 KVALFVDGKNAGQEAVVVLDQTPFYAESGGQVGDKGELKSFAVEDTQKYGQAIGHIGKLA 364
+A+F K + ++ V +T + E G+VG ++F +D ++ Q +G I L

Sbjct: 305 HIAIFARRKYSYRDLPVKYSETVYRYEKSGEVGGLTRPRAFTQDDGHEFDQIVGEIKTLL 364

Query: 365 AGSLKVGDAVQADVDEARRARIRLNHSATHLMHAALRQVLGTHVSQKGSLVNDKVSHNEA 424
+ V +++ A + I H +L+ + +G+ + V H+

Sbjct: 365 GMVRETFTTVFGNIEMADLSVIDKEHPENYLLSYVCKDCGNRVEGLRGTDIECPVCHSHN 424

Query: 425 MKPERAVEDLVNTQIRRNLNIMDLEAAKAKGAMALFGEKYDERVRELCGGTHASRTGDIG 484
M P+ + D Q+R+ ++ M + + G A +G K D V++ G T +

Sbjct: 425 MDPDFSTWDNATEQLRQAMDSMGITYKEYPGEAAFYGPKIDVHVKDALGRMWQLSTIQVD 484

Query: 485 LFRIISAGVRRIEAVTGEGAIATVHADSDRLVAHLLKNLADKVRSVLERTRXXXXXXXXX 544
F I+ G+ + E + +H +R +A LL++ A K+ + L +

Sbjct: 485 FFMPINFGLTYTNSEGKEERVVIIHGSYERFMAILLEHFAGKLPTWLTPIQTYVIPVGTA 544

Query: 545 XXXXXNLSSKAIDVNGVKLLVSEEPKMLRTMVDDLKNQLGSTIIVLATVVE 595
+K++ G++ +V + P + + + +Q S I+V+ E

Sbjct: 545 NAEYARKVNKSLLDAGIRSVVDDGPDTVSKKIKMIHDQRPSYIVVVGAKEE 595

Lambda K H
0.317 0.134 0.377

Gapped
Lambda K H

0.267 0.0410 0.140

Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 771
Number of extensions: 33
Number of successful extensions: 3
Number of sequences better than 10.0: 1
Number of HSP’s gapped: 1
Number of HSP’s successfully gapped: 1
Length of query: 633
Length of database: 2,165,046,588
Length adjustment: 144
Effective length of query: 489
Effective length of database: 2,165,046,588
Effective search space: 1058707781532
Effective search space used: 1058707781532
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 16 ( 7.3 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 41 (21.6 bits)
S2: 84 (37.0 bits)
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4.3 Independent ancestry favored in a phylogenetic test for three highly similar proteins due to
the “triangle inequality”

The following three artificial (i.e. intelligently designed) 480 aa protein sequences have high sequence similarity
as gauged by BLAST E-values (again using the bl2seq utility with the database size of the current non-redundant
database, 2,165,046,588). The ‘mytu1’ sequence is the query sequence, and both the ‘esco1’ and ’pogi1’ sequences
are highly significant ‘hits’ with very low E-values (1e-116 and 1e-122 respectively). In contrast, ‘esco1’ and
‘pogi1’ have undetectable sequence similarity between them. The optimal alignment from MUSCLE and the
BLAST results are shown below.

Let the common ancestry hypothesis, that all three proteins are related, be MEP. A competing independent ancestry
hypothesis ME+P represents the case where mytu1 and esco1 share a common ancestor to the exclusion of pogi1
(with analogous definitions for MP+E and EP+M). The log-likelihoods are shown in Table S12, using the WAG
matrix with gamma distributed rate variation. The best hypothesis (with the highest likelihood) is MP+E. The
common ancestry hypothesis, MEP, is relatively disfavored by 15.9 logs, which means it is about 8 million times
less likely than the best independent origins hypothesis. While 15.9 logs may appear small compared to the log-
likelihood ratios for the tests reported in the main text, the LLR per site is 0.0331, which is equivalent to 218 logs
for a dataset with 6591 sites, such as the Brown et al. dataset used in these analyses.

Table S12

Hypothesis LL LLR (relative to MEP)
MEP -4170.1 0
MP+E -4154.2 -15.9
EP+M -4612.8 442.7
ME+P -4161.2 -8.9

>esco1
AWHPWDPAAAWNADHHAHHWWWPDPNWAAHHADWNADDAADAPWHWDAHWAAHWWWHPWWAHAHPPWAPA
NAPAAAHHAHPWWAWNPPPAPDAHHNWAADPWNANADPDNWAPWNDWAAWWPNWHDDDNHHANWNDPHWP
PAWWNDWHANNDAANWNPDNNAAHADAWAWNAAWHHNWAPDHPWAWAAAAAWPWHAWNWWWAANWNDWAH
WWWDHWWAHADWWHWAAWWNDPPPAPWAWWDHHDWHWPPAAPWAHDNANDWPWNPDPPDAWADPWNAWWH
PNWNPWWHWDWWWDWWHDDAPHWNAHAWDDDPDNDNPANADDWWNANHWWANWNWAWAHDAAPADWHAPA
HWHWDNWPHDPAADWWANANAWAWWHPPWHWPHWNNWPAPPAANNPAWWDDAAAWWNPHAWWDWADAPDW
NNADHHAHDNAHWAWAWAPHAAHDAWPWANAWAWWNAHADPAAHAHWDANNDNPWANNWN
>mytu1
CDHPDDPRRCPNRDHHRHHPDPPDPNPCCHHRDDNRDDRRDCPPHPDCHDCRHDDDHPDPRHRHPPPCPR
NCPCCCHHRHPDPRDNPPPRPDCHHNDRRDPDNCNRDPDNDCPPNDPCCDPPNDHDDDNHHRNDNDPHDP
PRDDNDPHRNNDRCNDNPDNNCRHCDRDCDNCRPHHNDRPDHPPRPCRRRRPPDHCDNPPDRCNDNDPRH
DDPDHPDCHRDPDHDRCDDNDPPPCPPCDPDHHDPHPPPRCPPCHDNRNDDPPNPDPPDCDRDPDNRPDH
PNPNPPPHPDDDDDDPHDDRPHPNCHRPDDDPDNDNPCNRDDPDNCNHPDCNPNPRPCHDCRPCDPHRPR
HPHPDNPPHDPCCDDPCNRNCPCPDHPPDHPPHPNNPPRPPCCNNPCPDDDRRCDDNPHRDPDDRDRPDP
NNRDHHCHDNCHPCDCDCPHRCHDRDPDCNCDRPPNRHCDPRCHCHDDRNNDNPPCNNPN
>pogi1
CDGYDYYRRCPGRYGGRGGPDPYYYGPCCGGRYDGRYYRRYCYPGPYCGDCRGDDDGYDPRGRGYYPCYR
GCYCCCGGRGYDPRDGYYYRYYCGGGDRRYYDGCGRYYYGDCYPGYPCCDPYGDGYYYGGGRGDGYYGDY
YRDDGYPGRGGYRCGDGYYGGCRGCYRDCDGCRPGGGDRYYGYPRPCRRRRPYDGCDGPPDRCGDGYPRG
DDPYGPDCGRYPDGDRCDDGYYYYCYPCDPYGGYPGPYYRCYPCGYGRGYDYPGYYYYYCDRYYDGRPDG
YGPGYPPGPYDDDYDPGYYRYGPGCGRPYYYYYGYGYCGRYYPDGCGGPDCGPGPRPCGYCRYCYPGRYR
GPGPYGPYGYYCCYDPCGRGCPCPDGYYDGPYGPGGPYRYYCCGGYCPDYYRRCDDGYGRDPYDRYRYYP
GGRYGGCGYGCGPCDCDCYGRCGYRDYDCGCDRPPGRGCYYRCGCGDYRGGYGYPCGGPG

18



17www.nature.com/nature

SUPPLEMENTARY INFORMATIONdoi: 10.1038/nature09014

CLUSTAL W (1.83) multiple sequence alignment

esco1 AWHPWDPAAAWNADHHAHHWWWPDPNWAAHHADWNADDAADAPWHWDAHWAAHWWWHPWW
mytu1 CDHPDDPRRCPNRDHHRHHPDPPDPNPCCHHRDDNRDDRRDCPPHPDCHDCRHDDDHPDP
pogi1 CDGYDYYRRCPGRYGGRGGPDPYYYGPCCGGRYDGRYYRRYCYPGPYCGDCRGDDDGYDP

esco1 AHAHPPWAPANAPAAAHHAHPWWAWNPPPAPDAHHNWAADPWNANADPDNWAPWNDWAAW
mytu1 RHRHPPPCPRNCPCCCHHRHPDPRDNPPPRPDCHHNDRRDPDNCNRDPDNDCPPNDPCCD
pogi1 RGRGYYPCYRGCYCCCGGRGYDPRDGYYYRYYCGGGDRRYYDGCGRYYYGDCYPGYPCCD

esco1 WPNWHDDDNHHANWNDPHWPPAWWNDWHANNDAANWNPDNNAAHADAWAWNAAWHHNWAP
mytu1 PPNDHDDDNHHRNDNDPHDPPRDDNDPHRNNDRCNDNPDNNCRHCDRDCDNCRPHHNDRP
pogi1 PYGDGYYYGGGRGDGYYGDYYRDDGYPGRGGYRCGDGYYGGCRGCYRDCDGCRPGGGDRY

esco1 DHPWAWAAAAAWPWHAWNWWWAANWNDWAHWWWDHWWAHADWWHWAAWWNDPPPAPWAWW
mytu1 DHPPRPCRRRRPPDHCDNPPDRCNDNDPRHDDPDHPDCHRDPDHDRCDDNDPPPCPPCDP
pogi1 YGYPRPCRRRRPYDGCDGPPDRCGDGYPRGDDPYGPDCGRYPDGDRCDDGYYYYCYPCDP

esco1 DHHDWHWPPAAPWAHDNANDWPWNPDPPDAWADPWNAWWHPNWNPWWHWDWWWDWWHDDA
mytu1 DHHDPHPPPRCPPCHDNRNDDPPNPDPPDCDRDPDNRPDHPNPNPPPHPDDDDDDPHDDR
pogi1 YGGYPGPYYRCYPCGYGRGYDYPGYYYYYCDRYYDGRPDGYGPGYPPGPYDDDYDPGYYR

esco1 PHWNAHAWDDDPDNDNPANADDWWNANHWWANWNWAWAHDAAPADWHAPAHWHWDNWPHD
mytu1 PHPNCHRPDDDPDNDNPCNRDDPDNCNHPDCNPNPRPCHDCRPCDPHRPRHPHPDNPPHD
pogi1 YGPGCGRPYYYYYGYGYCGRYYPDGCGGPDCGPGPRPCGYCRYCYPGRYRGPGPYGPYGY

esco1 PAADWWANANAWAWWHPPWHWPHWNNWPAPPAANNPAWWDDAAAWWNPHAWWDWADAPDW
mytu1 PCCDDPCNRNCPCPDHPPDHPPHPNNPPRPPCCNNPCPDDDRRCDDNPHRDPDDRDRPDP
pogi1 YCCYDPCGRGCPCPDGYYDGPYGPGGPYRYYCCGGYCPDYYRRCDDGYGRDPYDRYRYYP

esco1 NNADHHAHDNAHWAWAWAPHAAHDAWPWANAWAWWNAHADPAAHAHWDANNDNPWANNWN
mytu1 NNRDHHCHDNCHPCDCDCPHRCHDRDPDCNCDRPPNRHCDPRCHCHDDRNNDNPPCNNPN
pogi1 GGRYGGCGYGCGPCDCDCYGRCGYRDYDCGCDRPPGRGCYYRCGCGDYRGGYGYPCGGPG
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Query= mytu1
(480 letters)

>esco1
Length = 480

Score = 422 bits (1084), Expect = e-116
Identities = 240/478 (50%), Positives = 240/478 (50%)

Query: 3 HPDDPRRCPNRDHHRHHPDPPDPNPCCHHRDDNRDDRRDCPPHPDCHDCRHDDDHPDPRH 62
HP DP N DHH HH PDPN HH D N DD D P H D H H HP H

Sbjct: 3 HPWDPAAAWNADHHAHHWWWPDPNWAAHHADWNADDAADAPWHWDAHWAAHWWWHPWWAH 62

Query: 63 RHPPPCPRNCPCCCHHRHPDPRDNPPPRPDCHHNDRRDPDNCNRDPDNDCPPNDPCCDPP 122
HPP P N P HH HP NPPP PD HHN DP N N DPDN P ND P

Sbjct: 63 AHPPWAPANAPAAAHHAHPWWAWNPPPAPDAHHNWAADPWNANADPDNWAPWNDWAAWWP 122

Query: 123 NDHDDDNHHRNDNDPHDPPRDDNDPHRNNDRCNDNPDNNCRHCDRDCDNCRPHHNDRPDH 182
N HDDDNHH N NDPH PP ND H NND N NPDNN H D N HHN PDH

Sbjct: 123 NWHDDDNHHANWNDPHWPPAWWNDWHANNDAANWNPDNNAAHADAWAWNAAWHHNWAPDH 182

Query: 183 PPRPCRRRRPPDHCDNPPDRCNDNDPRHDDPDHPDCHRDPDHDRCDDNDPPPCPPCDPDH 242
P P H N N ND H DH H D H NDPPP P DH

Sbjct: 183 PWAWAAAAAWPWHAWNWWWAANWNDWAHWWWDHWWAHADWWHWAAWWNDPPPAPWAWWDH 242

Query: 243 HDPHPPPRCPPCHDNRNDDPPNPDPPDCDRDPDNRPDHPNPNPPPHPDDDDDDPHDDRPH 302
HD H PP P HDN ND P NPDPPD DP N HPN NP H D D HDD PH

Sbjct: 243 HDWHWPPAAPWAHDNANDWPWNPDPPDAWADPWNAWWHPNWNPWWHWDWWWDWWHDDAPH 302

Query: 303 PNCHRPDDDPDNDNPCNRDDPDNCNHPDCNPNPRPCHDCRPCDPHRPRHPHPDNPPHDPC 362
N H DDDPDNDNP N DD N NH N N HD P D H P H H DN PHDP

Sbjct: 303 WNAHAWDDDPDNDNPANADDWWNANHWWANWNWAWAHDAAPADWHAPAHWHWDNWPHDPA 362

Query: 363 CDDPCNRNCPCPDHPPDHPPHPNNPPRPPCCNNPCPDDDRRCDDNPHRDPDDRDRPDPNN 422
D N N HPP H PH NN P PP NNP DD NPH D D PD NN

Sbjct: 363 ADWWANANAWAWWHPPWHWPHWNNWPAPPAANNPAWWDDAAAWWNPHAWWDWADAPDWNN 422

Query: 423 RDHHCHDNCHPCDCDCPHRCHDRDPDCNCDRPPNRHCDPRCHCHDDRNNDNPPCNNPN 480
DHH HDN H PH HD P N N H DP H H D NNDNP NN N

Sbjct: 423 ADHHAHDNAHWAWAWAPHAAHDAWPWANAWAWWNAHADPAAHAHWDANNDNPWANNWN 480

Lambda K H
0.320 0.149 0.595

Gapped
Lambda K H

0.267 0.0410 0.140

Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 4338
Number of extensions: 804
Number of successful extensions: 5
Number of sequences better than 10.0: 1
Number of HSP’s gapped: 1
Number of HSP’s successfully gapped: 1
Length of query: 480
Length of database: 2,165,046,588
Length adjustment: 141
Effective length of query: 339
Effective length of database: 2,165,046,588
Effective search space: 733950793332
Effective search space used: 733950793332
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 16 ( 7.4 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 41 (21.7 bits)
S2: 82 (36.2 bits)
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Query= mytu1
(480 letters)

>pogi1
Length = 480

Score = 443 bits (1140), Expect = e-122
Identities = 240/479 (50%), Positives = 240/479 (50%)

Query: 1 CDHPDDPRRCPNRDHHRHHPDPPDPNPCCHHRDDNRDDRRDCPPHPDCHDCRHDDDHPDP 60
CD D RRCP R R PDP PCC R D R RR C P P C DCR DDD DP

Sbjct: 1 CDGYDYYRRCPGRYGGRGGPDPYYYGPCCGGRYDGRYYRRYCYPGPYCGDCRGDDDGYDP 60

Query: 61 RHRHPPPCPRNCPCCCHHRHPDPRDNPPPRPDCHHNDRRDPDNCNRDPDNDCPPNDPCCD 120
R R PC R C CCC R DPRD R C DRR D C R DC P PCCD

Sbjct: 61 RGRGYYPCYRGCYCCCGGRGYDPRDGYYYRYYCGGGDRRYYDGCGRYYYGDCYPGYPCCD 120

Query: 121 PPNDHDDDNHHRNDNDPHDPPRDDNDPHRNNDRCNDNPDNNCRHCDRDCDNCRPHHNDRP 180
P D R D D RDD P R RC D CR C RDCD CRP DR

Sbjct: 121 PYGDGYYYGGGRGDGYYGDYYRDDGYPGRGGYRCGDGYYGGCRGCYRDCDGCRPGGGDRY 180

Query: 181 DHPPRPCRRRRPPDHCDNPPDRCNDNDPRHDDPDHPDCHRDPDHDRCDDNDPPPCPPCDP 240
PRPCRRRRP D CD PPDRC D PR DDP PDC R PD DRCDD C PCDP

Sbjct: 181 YGYPRPCRRRRPYDGCDGPPDRCGDGYPRGDDPYGPDCGRYPDGDRCDDGYYYYCYPCDP 240

Query: 241 DHHDPHPPPRCPPCHDNRNDDPPNPDPPDCDRDPDNRPDHPNPNPPPHPDDDDDDPHDDR 300
P P RC PC R D P CDR D RPD P PP P DDD DP R

Sbjct: 241 YGGYPGPYYRCYPCGYGRGYDYPGYYYYYCDRYYDGRPDGYGPGYPPGPYDDDYDPGYYR 300

Query: 301 PHPNCHRPDDDPDNDNPCNRDDPDNCNHPDCNPNPRPCHDCRPCDPHRPRHPHPDNPPHD 360
P C RP C R PD C PDC P PRPC CR C P R R P P P

Sbjct: 301 YGPGCGRPYYYYYGYGYCGRYYPDGCGGPDCGPGPRPCGYCRYCYPGRYRGPGPYGPYGY 360

Query: 361 PCCDDPCNRNCPCPDHPPDHPPHPNNPPRPPCCNNPCPDDDRRCDDNPHRDPDDRDRPDP 420
CC DPC R CPCPD D P P P R CC CPD RRCDD RDP DR R P

Sbjct: 361 YCCYDPCGRGCPCPDGYYDGPYGPGGPYRYYCCGGYCPDYYRRCDDGYGRDPYDRYRYYP 420

Query: 421 NNRDHHCHDNCHPCDCDCPHRCHDRDPDCNCDRPPNRHCDPRCHCHDDRNNDNPPCNNP 479
R C C PCDCDC RC RD DC CDRPP R C RC C D R PC P

Sbjct: 421 GGRYGGCGYGCGPCDCDCYGRCGYRDYDCGCDRPPGRGCYYRCGCGDYRGGYGYPCGGP 479

Lambda K H
0.320 0.149 0.595

Gapped
Lambda K H

0.267 0.0410 0.140

Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 3636
Number of extensions: 655
Number of successful extensions: 7
Number of sequences better than 10.0: 1
Number of HSP’s gapped: 1
Number of HSP’s successfully gapped: 1
Length of query: 480
Length of database: 2,165,046,588
Length adjustment: 141
Effective length of query: 339
Effective length of database: 2,165,046,588
Effective search space: 733950793332
Effective search space used: 733950793332
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 16 ( 7.4 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 41 (21.7 bits)
S2: 82 (36.2 bits)
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